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Abstract  
The goal of this paper is to assess the impact of future climate change on the hydrological 
regime of the tropical Upper Suriname river basin (7,860 km2) located in Suriname. GCM 
based climate scenarios from the MAGICC/SCENGEN model and 14 hypothetical climate 
scenarios are used to examine potential changes in water balance components in the study 
area. A physically-based distributed hydrological model, WetSpa, and Geographic Information 
Systems (GIS) are used to simulate the historical and future hydrological conditions. The 
evaluation results indicate that the model has a relatively high confidence (model bias C1 is 
0.046 and the model determinant coefficient C2 is 0.833) and can give a fair representation of 
the river flow hydrographs at daily scale (Nash Sutcliffe coefficient C3 is 0.622). The results 
indicate that an obvious increase in the annual temperature (1.8oC and 3.2oC by 2050 and 
2080 respectively) in the study area is accompanied with a clear tendency in reduced 
precipitation during January-March and August-December, and an increased tendency during 
April-July. The sensitivity analyses of water balance components under temperature and 
precipitation change (GCM scenarios for 2050, 2080) shows that by 2080, the annual river 
discharge will drop 35%. The hypothetical climate scenarios (T+2oC, T+4oC and P+10%, 
+30%, +50%) however indicate that the annual river discharge will increase with maximum 
75% for the scenario T+2oC P+50% and will decrease with maximum 87.5% for the scenario 
T+2oC P-50%. The results are indications of potential impacts of climate change on water 
resources in the Upper Suriname river basin, but true predictive skills require a significant 
improvement in the ability of global climate models to predictive changes in regional climate 
variability. The WetSpa model has proven to be useful for hydrological modeling studies 
where availability of physical catchment characteristics and hydroclimatic data is scarce.  
 
Keywords: Climate Change; Climate Change Scenarios; Geographic Information Systems; 
Global Circulation Models; Hydrologic Modeling; Upper Suriname river basin. 
 
Introduction 
The increase in global mean surface air temperature by about 0.6°C + 0.2°C over the late 20th 
century has affected the global hydrological cycle (Glen, 2004). According to climate models, 
the global surface temperature is likely to rise by about 1.5-3.5oC by the end of 2100. A 
simple increase in temperature will increase evaporation and enable the atmosphere to 
transport higher amounts of water vapor. Therefore, it is assumed that rainfall and runoff will 
be accelerated. Long-term changes in precipitation on earth will affect water resources and, 
consequently different socio-economic sectors such as hydropower generation, drinking water 
supply, irrigation, ecosystems, forests and wetlands. 
 
Predicting long-term climate change impacts on water resources using hydrological modeling 
and climate modeling is still a very intricate task. Currently, Global Circulation Models (GCMs) 
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are the most powerful climate models to predict changes in hydrometeorological variables 
(e.g. cloud cover, evaporation, temperature, precipitation, soil moisture) due to increasing 
levels of atmospheric greenhouse gases (Bronstert et al, 2002; Gleick, 1986; IPCC, 2001; 
IPCC-TGCIA, 1999). However, the outputs of the GCMs may not be used directly for climate 
impact analyses at basin scale due to the coarse resolution (about 300 km) and the fact that 
local climate (e.g precipitation) and/or hydrological processes are still not well reproduced in 
time and space by the GCMs. Therefore, the results of GCMs can only be used for sensitivity 
analyses. The use of hypothetical climate change scenarios can also be considered as an 
option to study future hydrological changes (Niemann et al 1994; Robock et al, 1993).  
 
Hydrological models, using geographic information systems (GIS) techniques, are nowadays 
a powerful tool to understand current and future hydrological changes of a river basin 
(Boorman and Sefton, 1997; Gleick, 1986; Perrin et al, 2001). GIS techniques allow us to 
handle the spatial varied data in digital form and to derive basin parameters (e.g. slope, flow 
direction). There are a few classifications for hydrological models and they are somewhat 
arbitrary (Beven, 2000; Booij, 2002; Maidment 1992; Perrin et al 2001). In general, 
hydrological models can be classified in empirical, conceptual and physically based spatial 
distributed models. Some conceptual models are the Stanford watershed model (Crawford 
and Linsley, 1966), the HBV model (Bergstrom and Forsman, 1973) and the PRMS model 
(Leavesley et al, 1983). Some physically based spatial distributed models are the IHDM 
model (Calver and Woord, 1995), the TOPMODEL (Beven and Kirkby, 1979), the MIKE-SHE 
model (Refsgaard and Storm, 1995), the HBV model (Lindstrom et al, 1997) and the SWAT 
model (Arnold et al, 1998). The main differences between the first two and third group of 
models is that the empirical and conceptual models take no or very less account of the spatial 
distribution of physical data of the basin (e.g. soil, land use, topography) nor of the spatial 
variation of the climate (e.g. precipitation, evaporation), they have very few parameters to 
optimize, are easier to operate and require less data than the distributed models.   
 
It has been shown that distributed hydrological models for (large tropical) catchments have 
important application to the prediction of the effect of climate change (Andersen et al, 2001; 
Bormann, 2005; Campling et al, 2002; Gleick, 1986; Roulin, 1998; Legesse et al, 2003; Liu, 
1999; 2004; Menzel and Burger, 2002; Molicova et al, 1997; Perrin et al, 2001). For example, 
Legesse et al (2003) applied a physical distributed precipitation-runoff model, PRMS, to the 
Ketar river basin (3,220 km2) in Ethiopia and arbitrary climate scenarios. This study shows 
that a 10% change in daily rainfall results in a decrease in annual runoff of about 30%. The 
model has shown to produce relative good results for an area with poor data. The main 
conclusions from many of the above case studies is that the predicted climate change 
impacts are influenced by the model performance and the lack of spatial detail in GCMs, 
which makes it difficult to reflect the inhomogeneous spatial pattern in precipitation and 
evapotranspiration. The model performance is mainly influenced by the inadequacy of the 
model structure, errors in data, the lack of high resolution topographic, soil and land use 
maps, the lack of sufficient rainfall stations and measurements of potential evapotranspiration, 
and information on soil hydraulic processes. 
 
In the tropical part of South America, the climate is mainly characterized by a large inter 
annual to decadal variability in rainfall and river discharges caused by the variability in sea 
surface temperature (Ambrizzi et al, 2005; Giannini et al, 2000; Marshall et al, 2001; Martis et 
al, 2002; Rajagopolan et al, 1997; Wang, 2001, 2005). In Suriname (2o-6o Northern Length, 
54o-58o Western Length), the sensitivity to short term climatic fluctuations can be illustrated by 



Nurmohamed et al. / JOSH  (2007) 1-22 
 

Journal of Spatial Hydrology 
 

3

prolonged dry (drought) and wet periods (heavy rainfall, floods). Some prolonged dry periods 
were in (a) north-west Suriname during 1925-1926, 1939-1940, August-November 1982, 
December 1982-February 1983, August 1997-February 1998, and (b) in central Suriname 
(Houben and Molenaar, undated; Mol et al, 2000). Some floods were experienced in (a) 
south-west and central Suriname during the first half of 2000, April 2004, and (b) northern 
Suriname (Paramaribo) during September 2004, July-August 2005 (Hollande, N., personal 
communication, October 1, 2004; Scheltz, E., personal communication, September 5, 2004).  
 
One of the sensitive areas in Suriname is the Upper Suriname river basin (Fig. 1), which is 
the main source of water for the Prof. Dr. Ir. van Blommenstein reservoir. This artificial 
reservoir is being used for hydropower generation (189 Megawatts) for industrial and 
domestic purposes, and is therefore very important for the economy of Suriname. This 
reservoir has also been affected by prolonged dry periods such as in 1987-1988 (18 months), 
March 1999, January 2001 and September 2004-January 2005. The continuing increase in 
global temperature on earth  (IPCC, 2001), makes it necessary also to understand how river 
flows and/or water balances of river basins my change due to long term climate changes as it 
will impact the management of water resources. The goal of this paper is therefore to 
understand how water resources in the Upper Suriname river basin (Suriname) might change 
due to future climate change by using a hydrological model and climate change scenarios. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Location map of the Upper Suriname river basin (Suriname) and measuring 
networks. 
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Figure 2: Mean monthly precipitation (P), pan evaporation (Eo), potential evapotranspiration 
(PET) and river discharge (Qpok) in the Upper Suriname River basin. 
 
Study area and data used 
 
Selected catchment 
The Upper Suriname River basin is situated in Suriname and has a total drainage area iof 
about 7,860 km2 up till Pokigron (Fig. 1). The topography varies from  75 m to 809 m above 
mean sea level. The natural vegetation comprises high tropical dense forest. The different soil 
types in this basin are: sand (1.6%), silt (5.5%), silt clay loam (48.2%), clay loam (27.9%) and 
clay (16.8%). Till today, no significant changes in land use have been observed in this area. 
The basin is characterized by a tropical humid climate with a substantial seasonal variation. 
Fig. 2 shows plots of the mean monthly values of precipitation, estimated pan evaporation,  
stimated potential evapotranspiration and river discharge in the basin. These values are 
arithmetic mean of the variables of the stations, as shown in Fig. 1. The highest average 
precipitation is observed in May and is about 386 mm and the lowest average precipitation is 
observed in October and is about 58 mm (Nurmohamed and Naipal, 2004). The monthly pan 
evaporation in the study area varies from 93 mm in January to 138 mm in October (Lenselink 
and van der Weert, 1970). The highest discharge is reached in June and is about 495 m3/s 
and the lowest discharge is about 34 m3/s in November. The annual precipitation in this area 
is about 2,300 mm for the lower part of the basin and increases to 2,800 mm for the upper 
part of the basin. The annual pan evaporation is around 1,850 mm. The annual discharge at 
Pokigron (1952-1985) is about 219 m3/s. 
 
Data collection 
Daily and monthly series of six rainfall stations (1961-1983) in or close to the study area 
(station Brownsweg, Pokigron, Botopasi, Djoemoe, Ligorio and Tafelberg) were obtained from 
the Meteorological Service Suriname. Records of mean daily river discharge (1952-1985) at 
two stations (Pokigron and Semoisie) were obtained from the Hydraulic Research Division 
Suriname and the Bureau for Hydroelectric Power Works. Only these stations were found 
suitable for use in this study in terms of data length and continuity. The network of these 
stations is shown in Fig. 1. Pan evaporation (Eo) data is very scarce in this area. Therefore, 
pan evaporation data (1975-1983) at Pokigron has been interpolated from station Coeroeni 
(at about 233 km) and Sipaliwini (at about 216 km) and pan evaporation data at Semoisie has 
been interpolated from station Stoelmanseiland (at about 120 km). Although these stations 
are very far, they are the closest stations to the study area with mostly complete daily bserved 
data. The actual evapotranspiration (ET) is estimated from the long-term water balance in this 
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basin, ET = Q-P, with ET = k*Eo, where Q is the river discharge, P is the precipitation, Eo is 
the pan evaporation, k is a monthly factor. The years 1975-1983 were finally selected  
because they have sufficient daily data to use for hydrological modeling purposes.  
 
To complete missing data of precipitation and discharge, linear interpolating is done. The 
linear correlation coefficient (Pearson) between the monthly rainfall data of the stations 
ranges from 0.51 to 0.82. The river flows at Semoisie and Pokigron show a high consistency 
with a cross correlation coefficient of 0.95 for lag 0 and 0.71 for lag 1 month. A topographic 
map with river network of 1:100,000 (50 m interval) from year 1963, a soil map of 1:100,000 
from 1963 and a land use map of 1:100,000 from 1963 were obtained from the Center of 
Natural Resources and Assessment (Narena). Observed baseline precipitation and 
temperature data used in the GCMs were taken from the Climatic Research Unit global 0.5 x 
0.5o 1961-1990 climate archive.  

 
Methodology 
In this paragraph, the WetSpa model is first described, followed by the way the input data has 
been processed. In the last section, an explanation is given on how the different climate 
change scenarios have been constructed.  
 
Description of the WetSpa model 
WetSpa is a continuous, distributed, physically-based hydrological model with variable time 
step (hourly or daily). This model is developed by the Vrije Universiteit Brussel, Belgium (Liu 
and De Smedt 2004) and has been applied to small and medium catchments (34-1,176 km2) 
in Belgium, Luxembourg, Slovakia and Hungary. Liu et al (1999, 2004) and Seifu (2003) have 
shown that the model is suitable for simulation of spatial distribution of hydrological processes 
and analysis of land use changes and climate change impacts of hydrological processes. The 
model structure is shown in Fig. 3 and the hydrological processes are summarized in Table 1.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic representation of the different components of the WetSpa model at a 
pixel cell level (Liu and De Smedt, 2004) 
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Table 1: Main hydrological processes and components per grid cell and equations of the 
WetSpa model (Liu, 2004) 
Process Equation  Approach 
Basin water 
balance  
 
Precipitation P 
 
Total runoff RT 
 
 
 
Overland flow RSi 
 
 
 
 
Interflow or 
subsurface runoff 
RIi 
 
 
 
Groundwater 
outflow QGs(t) 
 
 
 
 
 
 
Groundwater 
balance SGs(t) 
 
 
 
Percolation RGi 
 
 
 
 
Evapotranspiration 
ET 
 
 
 
Change in soil 
moisture ∆SS 
 
Change in 
groundwater 
storage ∆SG 

P = RT+ET+∆SS+∆SG 
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Linear 
diffusive wave 
approximation 
(Miler and 
Cunge, 1975) 
 
Darcy’s Law 
and kinematic 
approximation 
 
 
Non-linear 
reservoir 
method 
(Wittenberg 
and 
Sivapalan, 
1999) 
 
 
- 
 
 
Darcy’s law 
and Brooks 
and Corey 
relationship 
(Brooks and 
Corey, 1966; 
Eagleson, 
1978) 
 
- 
 
 
 
- 
 
 
 
- 
 

Abbreviations:  T is the simulation period (s), Nw is the number of cells over the basin, RIi(t) 
is interflow out of a cell over time interval ∆t (day) (mm), cs is a scaling parameter, Di is the 
root depth (mm), Si is the cell slope (m/m), K(θi)t is the effective hydraulic conductivity 
(mm/hour), W is the cell width (mm), Kg is the non-linear groundwater flow recession 
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coefficient (m/s), SGs(t) groundwater storage of a subcatchment at time t (mm), cv is the 
vegetation coefficient, θi,f is the soil moisture content at field capacity (m3/m3), θi,w is the soil 
moisture content at plant wilting point (m3/m3), ESi(t) is the actual evaoptranspiration (mm), 
EDi(t) is cell evaporation (mm), EP is the daily potential evaporation (mm), EIi (t) is the 
evaporation from the cell interception storage (mm), t is the time step, Ai is the cell area (m2), 
As is the sub basin area (m2), QGs(t) is the groundwater discharge (m3/s), EGi (t) is the 
average evapotranspiration from groundwater storage of the sub basin (mm), cr is the runoff 
coefficient, θ is the soil moisture content (m3/m3), θs is the soil porosity (m3/m3), Ks is the 
saturated hydraulic conductivity, θr is the residual soil moisture content (m3/m3), B is the cell 
pore size distribution index, Nr is the number of subcatchments, θi(T) and θi(0) is the cell soil 
moisture constant at time T and time 0 (m3/m3).  
 
The main input data in the WetSpa model are digital spatial data (elevation, river network, 
land use and soil type), and hydrological and weather data (precipitation, evapotranspiration, 
discharges). For calibration of the model, nine global input parameters (Table 2) can be used 
for tropical areas. Most of the parameters are found through calibration. The main outputs of 
the WetSpa model are river flow hydrographs for the entire basin and subbasins (e.g. surface 
runoff, interflow, groundwater flow), water balance and spatial distributed hydrological 
characteristics for the entire basin at each time step (e.g. runoff, soil moisture, groundwater 
recharge, infiltration rates) (Liu et al, 2004; Seifu 2003).  
 
Table 2: Global input parameters in WetSpa (Liu, 2004) 
Parameter Name Unit Range  

(best value) 
Method of estimation 

ki 
 
 
 
 
 
Kg 
 
 
K_ss  
go  
 
 
G_max  
 
K_ep 
 
K_run 
 
P_max 

interflow scaling factor  
 
 
 
 
 
groundwater flow recession 
coefficient 
 
initial soil moisture  
initial groundwater storage in 
depth 
 
maximum groundwater 
storage in depth 
correction factor for potential 
evapotranspiration  
the surface runoff exponent 
  
maximum rainfall intensity 

- 
 
 
 
 
 
- 
 
 

mm 
mm 

 
 

mm 
 
- 
 
- 
 

mm/day

1-10 
 
 
 
 
 

< 0.01 or ki 
 
 
- 
- 
 
 
- 
 

~ 1.0 
 

1-3 
 
- 

ratio of horizontal and 
vertical hydraulic 
conductivity; calibration 
recession curve 
observed and computed  
hydrograph 
calibration of observed 
and computed low flow 
hydrographs 
calibration 
calibration of observed 
and computed low flows 
for initial phase 
calibration 
 
calibration of water 
balance simulation 
calibration 
from observations 
observations 
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Table 3: Evaluation criteria for the model performance  
Criteria Description Range 

(best value) 
Source 
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Model bias for 
evaluating the ability 
to reproduce water 

balance 
 
 

Determinant 
coefficient 

representing the 
simulation variance 
(model confidence) 

 
 

Model efficiency for 
evaluating the ability 
of reproducing river 

flows 
 
 

Model efficiency for 
evaluating the ability 
of reproducing low 

flows 
 
 

Model efficiency for 
evaluating the ability 
of reproducing high 

flows 

 
0 
 
 
 
 
 

0-1 (1) 
 
 
 
 
 
 

< 1 (1) 
 
 
 
 
 

< 1 (1) 
 
 
 
 
 

< 1 (1) 
 

 
Liu, 2004 

 
 
 
 
 

Liu, 2004 
 
 
 
 
 

Nash and 
Sutcliffe, 1970 

 
 
 
 
 

Smatkhin et al, 
1998 

 
 
 
 

Guex, 2001; 
USACE, 1998 

 
 

Abbreviations: Qsi is the simulated river flow at time step i (m3/s), Qoi is the observed river 
flow at time step i (m3/s), N is the number of time steps, Qo  is the mean observed river flows.  
 
The calibration period (January 1978 to December 1981) and the validation period (January 
1982 to December 1983) are selected for modeling analyses with a model initialization period 
set to 1975-1977. To determine how well the observed hydrographs are reproduced by the 
model, five model efficiencies (C1, C2, C3, C4, C5) are used (Table 3) and a visual inspection 
of the joint plots of the daily/monthly simulated and observed hydrographs is used to judge 
the ability of the model to simulate seasonal variability and extreme conditions. The global 
input parameters are adjusted till a satisfactory performance of the model is obtained. 
 
Data processing 
From the topographic contour map, a 10 m elevation contour map with grid size 50 m (slope 
factor 0.5, threshold factor 1.0) was first created from a 50 m elevation contour map using the 
ArcView Contour Gridder extension. Different resolution digital elevation models (DEM) were 
created (50 m, 100 m, 200 m, 500 m) using the TOPOGRID function in Arc/Info. From visual 
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comparison of the actual river network and the generated river network and because of 
computation time and computer memory, the 100 m DEM was accepted for further model 
simulation. From the DEM, the following physical parameters for each grid cell were created 
by ArcView: stream orders and network, slope of overland flow and river channels, flow 
direction, flow accumulation, subwatersheds based on stream links and the hydraulic radius 
according to a flood frequency of 2 years.  
 
The soil information was first reclassified according to the 12 U.S. Department of Agriculture 
soil texture classes (USDA) used in WetSpa and then also converted to a 100 m grid map. 
From the soil map, different maps of physical properties such as porosity, hydraulic 
conductivity, residual moisture, pore index field capacity, wilting point were created using the 
default parameters characterizing the soil of the study area (Table 4). The land use 
information was also converted into six land use classes used in WetSpa and then also 
converted to a 100 m grid. From this map, different maps of physical properties are calculated 
such as root depth, Manning’s coefficient and interception capacity using the default 
parameters characterizing the land use of the study area (Table 5). Based on the combination 
of DEM, soil and land use map, the potential runoff coefficient and depression capacity maps 
were created. The flow routing parameters are calculated using ArcView GIS using the slope, 
hydraulic radius and manning coefficient maps. From the results we can conclude that the 
average potential runoff coefficient is mainly between 0.2 and 0.4, while in the mountainous 
area values of up to 0.7 are reached. This is due to the steeper slopes in the mountainous 
area. The point rainfall data of six stations are used to create areal rainfall distribution, using 
the ArcView Thiessen polygon extension. For potential evapotranspiration, a Thiessen 
polygon map is also created based on time series at two locations.  
 
Table 4: Default parameters characterizing the soil in the study area (Liu and de Smedt, 
2004) 

Texture 
class 

Hydraulic 
conductivity 

(mm/h) 

Porosity
(m3/m3) 

Field 
capacity 
(m3/m3) 

Wilting 
point 

(m3/m3) 

Residual 
moisture 
(m3/m3) 

Pore size 
distribution 

index 
Clay loam 
Sand 
Silt clay loam 
Clay 
Silt 

1.51 
208.80 
4.32 
0.60 
6.84 

0.464 
0.437 
0.398 
0.475 
0.482 

0.310 
0.062 
0.244 
0.378 
0.258 

0.187 
0.024 
0.136 
0.251 
0.126 

0.075 
0.020 
0.068 
0.090 
0.015 

8.32 
3.39 
7.20 

12.13 
3.71 

 
Table 5: Default parameters characterizing the land use in the study area (Liu and de Smedt, 
2004) 

Land use  
class 

Vegetated 
fraction 

(%) 

Leaf area 
index 

Root 
depth 

(m) 

Manning’s 
coefficient 

(m-1/3 s) 

Interception 
capacity 

(mm) 
Evergreen 
broad leaf tree 
Tall grass 

90 
 

80 

5-6 
 

0.5-6.0 

1.5 
 

1.0 

0.60 
 

0.40 

0.15-2.00 
 

0.10-1.50 
 
The WetSpa model is finally run using observed daily rainfall, potential evapotranspiration and 
the derived physical parameters from digital elevation, land use and soil maps in ArcView GIS 
for both the semi-distributed and fully distributed model. In WetSpa, the fully distributed model 
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operates on cell scale and a variable time step and the semi-distributed model on small 
subwatershed scale.  
 
Climate change scenarios   
The MAGICC/SCENGEN climate model has been the primary model used by the 
Intergovernmental Panel on Climate Change (IPCC) and is therefore also used in this study to 
develop GCM based climate change scenarios. The following GCMs have been selected for 
this study: Had300 (UK Hadley Centre for Climate Prediction and Research, Europe), 
ECH498 (German Climate Research Centre, Germany), GFDL90 (US Geophysical Fluid 
Dynamics Laboratory, USA), CSI296 (Commonwealth Scientific and Ind. Research 
Organization, Australia) and CCSR96 (Japanese Centre for Climate Systems Research, 
Japan) (Assessed June 5, 2005 from http://www.pcmdi.llnl.gov/projects/cmip/ 
overview_ms/table1.html and http://www.grida.no/climate/ipcc_tar/wg1/316.htm#tab81). A 
study by Nurmohamed and Naipal (2004) has shown that the GCMs, although with a spatial 
resolution of 550 km, represent the seasonal variation in temperature and precipitation in 
Suriname reasonably well. The GCMs are used to simulate the average monthly change in 
temperature and precipitation for two time frames 2035-2064 (2050) and 2065-2094 (2080). 
The daily change is calculated by dividing the monthly change by 30 days. The daily 
temperature and precipitation changes for year 2050 and 2080 have been added to the 9 
years of daily observed data (1975-1983) (IPCC-TGCIA, 1999; Hulme et al, 2000; Wigley, 
2003). These future data time series are used as inputs in the WetSpa model to simulate 
future changes in water resources in the study area. The average of the outputs of the GCMs 
is used to present climate change for the study area, rather than outputs of a single GCM 
(Hulme et al, 2000). We will assume that the spatial and temporal pattern is constant, but only 
the magnitude will change. We should however remark that the periods of the observed data 
series in the study area (1975-1983) and the period of the baseline GCM data series 
(temperature: 1961-1990; precipitation: 1981-2000) are different. 
 
Because of the already mentioned limitations of GCMs (see paragraph 1), we will also use 
hypothetical scenarios. This method is adopted from Gellens and Roulin (1998) and is widely 
used. Changes in temperature of +2oC and +4oC and/or precipitation changes of +10%, +30% 
and +50% are adopted as scenarios. Such kind of scenarios have also been used by Booij, 
2002, 2005; Boorman et al, 1997; Bormann, 2005 and Bronstert et al, 2002. Compared to the 
GCM scenarios, the changes are here applied uniformly to the entire historical daily data 
series in the study area: future temperature data time series are created by adding to each 
historical daily observed temperature value, a change of +2oC or +4oC, and future 
precipitation data time series are created by adding to each historical daily observed 
precipitation value, a change of +10% or +30% or +50%. Based on a linear relationship 
between the observed actual evaporation and the observed temperature in the study area, 
the future evapotranspiration is estimated using the future temperature (Wigley, 2003). The 
future change in temperature is used to estimate the future change in evapotranspiration. It is 
simple assumed that evaporation changes linearly with temperature (Wigley, 2003). The 
WetSpa model is finally set up to run the GCM scenario years 2050 and 2080 and a total of 
14 hypothetical scenarios. Precipitation and evapotranspiration data for the period 1975-1983 
represent current climate conditions (1xCO2 concentration), and the GCM and hypothetical 
scenarios represent climate change conditions (2xCO2 concentration).  
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Results and analyses 
 
Calibration and validation results of the WetSpa model 
A manual calibration is used, starting with a first estimation of ki, Kg, K_ss, K_ep, go and 
G_max, using the methods and/or ranges mentioned in Table 2. The model is re-runned 
(about 75 runs) to obtain a good match between the observed and simulated river flow 
hydrographs. The judgment is based on numerical evaluation of the results. The following 
optimum global parameters were found and are used for further analyses : ki = 1.0, Kg = 0.01, 
K_ss = 1.0, K_ep = 1.0, go = 30 mm, G_max = 400 mm, K_run = 1.5, P_max = 300 mm/day. 
It was shown that the model performance is mainly affected by the global input parameters 
(the interflow scaling factor, the groundwater flow recession coefficient, the initial soil moisture 
and the initial groundwater storage). 
 
Table 6: Model performance for the calibration/validation period (1975-1983) for the Upper 
Suriname River basin at station Pokigron. C1 to C5 are the model evaluation criteria.  
 

Model Model evaluation 
Semi-distributed 
model 

C1 C2 C3 C4 C5 

Calibration (1978-1981) 
Validation (1982-1983) 
Total (1978-1983) 

-0.011 
0.194 
0.046 

0.839 
0.875 
0.833 

0.543 
0.768 
0.622 

0.555 
0.633 
0.609

0.643 
0.850 
0.715 

Fully  distributed 
model 

     

Calibration (1978-1981) 
Validation (1982-1983) 
Total (1978-1983) 

-0.219 
-0.029 
-0.166 

0.726 
0.794 
0.727 

0.552 
0.779 
0.631 

0.493 
0.779 
0.659

0.585 
0.804 
0.662 

 
Table 6 shows the comparison in model evaluation criteria for the semi-distributed and fully 
distributed model. It is found that the most sensitive global input parameters are ki, Kg, K_ss 
and go. From the results, we can also see that the semi-distributed model produces slightly 
better evaluation results than the fully distributed model. The calibration and validation results 
show that there is a reasonably moderate agreement between the measured and simulated 
river flows during this period. WetSpa reproduces the observed water balance (1978-1983) 
with 4.6% overestimation, the Nash-Sutcliffe model efficiency for reproducing the river flows is 
about 62% and the ability to reproduce low and high flows is 62% and 71% respectively. The 
model confidence is 83%. Figure 4 shows a typical calibration result for year 1982 
corresponding to the chosen global input parameters. From this result we can clearly see that 
the model has simulated the seasonal and inter-annual variability in river discharge in the 
basin very well. The increase in river flow can be explained by the heavy rainfall events and 
the increase in base flow (interflow and groundwater flow) during January - mid-June. The 
decrease in flow after mid-June can be explained by the decrease in rainfall events and the 
base flow. 
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Figure 4: Mean daily observed and simulated river discharge and simulated base flow at 
Pokigron for 1982 (semi-distributed model). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Comparison of the ranked value of the daily observed and simulated mean flows at 
Pokigron (1978-1983) 
 
Analyses of the ranked value of the observed and simulated flows indicates that there are 
some obvious deviations for low flows (Q < 160 m3/s) and for high flows (Q > 220 m3/s) (Fig. 
5). The error for small flows is up to 436%, especially for flows smaller than 30 m3/s and for 
large flows up to 23%. The large errors for small flows are caused by lack of observations, 
especially during the dry seasons (September-November). The errors for large flows may be 
caused by the use of daily observations, which cannot accurately capture storm events 
causing floods. The shortness of the data series may also have affected the calibration 
results. The lack of other measurements of the hydrological processes (e.g. groundwater flow, 
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infiltration) makes it also difficult to estimate the base flow recession coefficient, the surface 
runoff coefficient and the maximum groundwater storage and may also contribute to the large 
errors in low flows and high flows respectively. The deviations between the observed and 
simulated flows may further also be caused by the lack of a good representation of the 
meteorological conditions in the study area. The spatialization of point rainfall and evaporation 
data may also affect the quality of the hydrological simulation. Rainfall and evaporation 
stations are very scarce and the stations are generally located along the river. Other reasons 
are deficiency of model structure (Liu, 2004), low resolution and errors in the elevation, soil 
and land use maps, and the default input parameters used in the model. 
  
Table 7: Observed and simulated water balance of the Upper Suriname river basin for the 
period 1978-1983.  
Component Observed 

(mm) 
Percentage of 

P 
(%) 

Simulated 
(mm) 

Percentage of 
P 

(%) 
Precipitation 
Interception 
Infiltration 
Actual 
evapotranspiration 
Percolation 
Surface runoff 
Interflow 
Groundwater flow 
Total runoff 
Soil moisture 
difference 
Groundwater storage 

14173 
 
 

9237 
 
 
 
 
 

4736 
 

100 
 
 

65.2 
 
 
 
 
 

33.4 

14052 
1162 
9453 
8528 

 
5053 
2667 
112 
2177 
4956 
-28 

 
-51 

100 
8.3 

67.3 
60.7 

 
35.9 
19.1 
0.8 

13.9 
35.3 
-0.2 

 
-0.3 

   
Table 7 summarizes the observed and simulated water balance for the period 1978-1983. It is 
evident that, the observed and simulated precipitation and total runoff water balance 
components do not differ much from each other. The simulated water balance shows that the 
total runoff of the Upper Suriname River basin is composed of 57% surface runoff and 43% 
base flow (groundwater flow and interflow). The seasonal water balance analyses show that 
when the river discharge increases in the Upper Suriname river during December-February 
and March-May (wet season), the amount of surface runoff is about 60% and base flow about 
40% of the total runoff and does not change significantly during both periods (see Fig. 4).  
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Figure 6: Observed precipitation (1975-1983) in the Upper Suriname river basin, modeled 
observed baseline precipitation (1981-2000) and simulated future precipitation (2050, 2080) 
predicted by GCMs climate scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Observed temperature (1973-1985) near the Upper Suriname river basin (station 
Tafelberg), modeled observed baseline temperature (1961-1990) and simulated future 
temperature (2050, 2080) predicted by GCMs climate scenarios. 
 
When the discharge decreases, base flow dominates during June-August and September-
November (long dry season) and is about 67% and 74% of the total runoff respectively. 
Surface runoff is about 33% and 26% of the total runoff during June-August and September-
November respectively. It is also concluded from the results that, during the low flow period, 
the model evaluation results are the lowest. 
 
Climate change scenarios simulation 
Figure 6 shows the mean observed precipitation (1975-1983) and the modeled baseline 
precipitation (1981-2000) for the current climate, and the future monthly precipitation from the 
GCM outputs (2050, 2080) for the study area. The Pearson’s correlation coefficient (r) 
between the observed and modeled baseline monthly time series is 0.91 (p < 0.05), from 
which we can conclude that the GCM follows the seasonal pattern well. Two 30-year periods, 
namely 2035-2065 (2050) and 2070-2099 (2080) are used to estimate the future climate. The 
observed annual precipitation (1978-1983) in the study area is 2,388 mm and the modeled 
annual baseline precipitation (1981-2000) is 1,915 mm. This is a difference of about 20%.  
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The GCMs predict a decrease in precipitation during January-May with a maximum difference 
of 31.0 mm/month (8%) during May and a decrease of about 9 mm/month during September-
October. By 2050, an increase is predicted during June-August with a maximum difference of 
37.2 mm/month (24.2%) in August and 6.2 mm/month in December. The same pattern is 
found for 2080 but with higher values: a decrease in precipitation during January-May with a 
maximum difference of 43.4 mm/month (12.6%) in April and a decrease of about 12.4-18.6 
mm/month during September-October. During June-August, precipitation is expected to 
increase with a maximum difference of 65.1 mm/month (42.5%) in August and 9.3 mm/month 
in December. The annual precipitation in the basin will slightly decrease with about 68 mm 
(2.8%) in 2050 and 78.6 mm (3.3%) in 2080.  
 
Figure 7 shows the mean observed temperature (1975-1983) for station Tafelberg and the 
modeled baseline temperature (1961-1990) from the five GCMs for the study area. The 
seasonal pattern of monthly temperature is also well simulated by the GCMs (r = 0.90; p < 
0.05). The observed annual temperature (1978-1983) in the study area is 25.6oC and the 
modeled annual baseline temperature (1961-1990) is 25.9oC. This is a difference of 0.3°C. 
The annual temperature in the study area is predicted to increase with 1.8oC and 3.2oC by 
2050 and 2080 respectively. Figure 7 also shows the predicted mean monthly temperature 
corresponding the years 2050 and 2080. The GCMs predict an increase in mean temperature 
during all the months with a maximum of 2.2oC in September/October by 2050 and 3.8oC in 
September/October by 2080.  
 
From the predicted changes in temperature (Fig. 7), the future changes in pan evaporation 
are calculated. The annual pan evaporation in the study area is estimated to increase with 
about 1,048 mm (78%) by 2080 (if temperature increases 3.2oC). The historical monthly 
temperature series from the GCMs and the evaporation series at Pokigron and Semoisie 
have a correlation coefficient of 0.92 (p < 0.05) and 0.87 (p < 0.05) respectively. Fig. 8 shows 
the mean observed evaporation in the study area and the mean evaporation for 2050 and 
2080. The highest increase in evaporation is estimated to be in September and is 2.6 and 4.3 
mm/day by 2050 and 2080 respectively. Evapotranspiration is calculated according to the 
procedure mentioned in paragraph 3.3. The actual annual evapotranspiration in the study 
area is predicted to increase with 643 mm (8%) and 1401 mm (17%) by 2050 and 2080 
respectively. The changes in evapotranspiration are in the same order of magnitude as 
reported by Verhoog (1987). 
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Figure 8: Estimated pan evaporation (1975-1983) in the Upper Suriname river basin and 
estimated future pan evaporation (GCM scenarios: 2050, 2080). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Mean monthly values of river discharge, surface runoff and base flow of the  Upper 
Suriname river basin for the period 1978-1983 and the future period 2080 (GCM scenarios). 
 
Climate change impact on the Upper Suriname river basin 
Table 8a shows the annual water balance components for the 1978-1983 period and for the 
future periods 2050 and 2080 based on GCM results. The results indicate that for the GCM 
climate scenario year 2050, a 12% increase in mean annual precipitation and a 8% increase 
in mean annual evapotranspiration results in a reduction of the mean annual river discharge 
in the Upper Suriname river by 24% reference to the 1978-1983 period.  From the obtained 
results, we can conclude that a small change in the mean annual temperature (1.8oC and 
3.2oC for 2050 and 2080 respectively) has a significant impact on the river discharge. The 
annual river discharge components changes as follows: surface runoff decreases by 15% and 
base flow decreases by 40%. The monthly base flow and surface runoff reduction varies 
between 35% to 77% and 9% to 31% respectively. It is also found that for the GCM scenario 
year 2080, a decrease of 0.6% in mean annual precipitation and an increase in mean annual 
evapotranspiration of 17% results in a decrease of 35% in the mean annual river discharge. 
Surface runoff decreases by 19% and base flow decreases by 56%. The monthly base flow 

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months

Ev
ap

or
at

io
n 

(m
m

)

Calculated 1975-1983
Predicted 2050
Predicted 2080



Nurmohamed et al. / JOSH  (2007) 1-22 
 

Journal of Spatial Hydrology 
 

17

and surface runoff reduction vary between 60% to 92% and 6% to 42% respectively. The 
decrease in river discharge can be explained by the fact that evaporation from the soil and 
transpiration from plants increases. The impact of climate change on the different runoff 
components of the Upper Suriname river basin for the GCM scenarios year 2080, simulated 
with the WetSpa model, is graphically presented in Fig. 9. From these plots we can also see 
that, during January-June (wet season), surface runoff is the main source of the total river 
discharge while during July-November (dry season) base flow is mainly contributing to the 
river discharge. This is also shown in Table 8b. 
 
Table 8: (a) Annual water balance components for the current (1978-1983) and future periods 
(GCM scenarios for 2050, 2080), (b) change in mean monthly precipitation, total river 
discharge, surface runoff and base flow for future periods (GCM scenarios for 2050, 2080). 
The values in brackets are percentages referring to the 1978-1983 period. P is precipitation, 
Qt is total river discharge, Qs is surface runoff and Qb is base flow. 
 
Component \ Period 1978-1983 2050 2080 
Precipitation (mm) 
Actual evapotranspiration (mm) 
Total river discharge (mm) 
Surface runoff (mm) 
Base flow (mm) 
Difference in soil and 
groundwater storage (mm) 

14,052 
8,528 
4,956 
2,667 
2,289 

 
568 

15,734  (12%) 
9,171 (8%) 

3,733 (-24%) 
2,269 (-15%) 
1,385 (-40%) 

 
2830 

13,963 (-0.6%) 
9,929 (17%) 
3,230 (-35%) 
2,169 (-19%) 
1001 (-56%) 

 
804 

(a) 
  
Period 2050 2080 

Component P 
(mm)  

Qt 
(m3/s) 

Qs 
(m3/s)  

Qb 
(m3/s)  

P 
(mm) 

Qt 
(m3/s) 

Qs 
(m3/s) 

Qb 
(m3/s) 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

-15.5 (9) 
-19.6 
(12) 
-15.5 (7) 
-27 (8) 
-31 (8) 
3 (1) 
12.4 (5) 
37.2 
(24) 
-9 (10) 
-9.3 (16) 
0 (0) 
6.2 (3) 

-60 (36) 
-64 (37) 
-58 (32) 
-96 (25) 
-109 (26) 
-87 (25) 
-73 (28) 
-62 (35) 
-50 (45) 
-34 (57) 
-27 (47) 
-33 (29) 

-32 (31) 
-23 (24) 
-17 (17) 
-51 (20) 
-51 (20) 
-22 (13) 
-9 (9) 
-6 (9) 
-5 (14) 
-4 (24) 
-7 (22) 
-12 (15) 

-28 (43) 
-41 (51) 
-40 (49) 
-46 (40) 
-58 (35) 
-65 (37) 
-64 (42) 
-55 (49) 
-45 (59) 
-30 (70) 
-20 (77) 
-22 (65) 

-24.8 (15) 
-34.1 (22) 
-27.9 (12) 
-43.4 (13) 
-24.8 (6) 
6.2 (2) 
21.7 (9) 
65.1 (43) 
-18.6 (20) 
-12.4 (22) 
0 (0) 
9.3 (5) 

-63 (38) 
-77 (44) 
-85 (46) 
-159 (42) 
-170 (41) 
-142 (41) 
-117 (45) 
-86 (49) 
-70 (63) 
-43 (72) 
-33 (57) 
-47 (41) 

-20 (20) 
-26 (28) 
-28 (27) 
-84 (32) 
-70 (42) 
-35 (21) 
-16 (15) 
-4 (6) 
-9 (26) 
-5 (29) 
-9 (28) 
-18 (24) 

-43 (66) 
-51 (63) 
-57 (70) 
-75 (65) 
-99 (60) 
-108 (61) 
-102 (67) 
-83 (74) 
-62 (82) 
-38 (88) 
-24 (92) 
-29 (85) 

(b) 
 

Table 9 shows the changes in annual water balance components caused by hypothetical 
climate scenarios. The hypothetical scenarios shows that a 2oC and 4oC increase in 
temperature and no change in precipitation, causes a decrease in the total annual river 
discharge of 16% and 29.3% respectively. Surface runoff decreases by about 7.3% and 
13.9% respectively and base flow decreases by about 30.1% and 50% respectively. The 



Nurmohamed et al. / JOSH  (2007) 1-22 
 

Journal of Spatial Hydrology 
 

18

results are quit close to the WetSpa simulations using the GCM predictions for 2050 (~ 
T+2oC) and 2080 (~ T+4oC) respectively (see Table 8a and 9). When precipitation is 
increased up till 50%, the WetSpa model simulates an increase in annual river discharge up 
till 75% and 57% for T+2oC and T+4oC respectively. Surface runoff and base flow also 
increases (see Table 9). The fact that the estimated river discharge for T+4oC is lower than 
for T+2oC may be caused by the higher evapotranspiration. When precipitation is decreased 
up till 50%, the annual river discharge decreases up till 84% and 87.5% for T+2oC and T+4oC 
respectively. Surface runoff and base flow also decreases. The difference in hydrologic 
simulation results may be caused by the amount of changes generated from the GCM results 
and hypothetical scenarios, and the calculation method of the future scenarios. Hypothetical 
scenarios are found to give a good view of how water balance components may change 
under different climate change conditions. GCM outputs however may give more realistic 
climate change results, because the outputs are based on climate modeling results using 
observed climatological data. Taking this into account and the limitations presented in 
paragraph 1, the values presented in Table 8 and 9 give only an order of magnitude of a 
response to a hypothetical change in temperature and precipitation due to climate change. 
 
Table 9: Changes in annual water balance components in percentage for future periods 
caused by the following hypothetical scenarios (a) T+2oC P+10%, P+30%, P+50% and (b) 
T+4oC P+10%, P+30%, P+50%. The future values are given in percentages reference to the 
1978-1983 period. T is the temperature and P is precipitation. 
 

Component \ Period T+2oC,  
P-50% 

T+2oC, 
P-30% 

T+2oC,  
P-10% 

T+2oC, 
P+0% 

T+2oC, 
P+10% 

T+2oC, 
P+30% 

T+2oC,  
P+50% 

Actual evapotranspiration  
Total river discharge  
Surface runoff  
Base flow  

-32 
-84 

-76.5 
-93.1 

-13.2 
-61.2 
-53.4 
-71.8 

2.4 
-32 
-24 

 -44.1 

9.3 
-16 
-7.3 

-30.1 

16 
0.9 
11.4 
-16.1 

27.8 
36.8 
54.7 
9.7 

38.6 
75 

104.1 
33.5 

(a) 
Component \ Period T+4oC,  

P-50% 
T+4oC,  
P-30% 

T+4oC, 
P-10% 

T+4oC, 
P+0% 

T+4oC, 
P+10% 

T+4oC, 
P+30% 

T+4oC, 
 P+50% 

Actual evapotranspiration  
Total river discharge 
Surface runoff  
Base flow  

-29.9 
-87.5 
-78.8 
-97.8 

-8.4 
-69.3 
-57.1 
-84.3 

9.3 
-43.8 
-29.7 
 -62.4 

17 
-29.3 
-13.9 
-50.1 

24.3 
-13.5 
3.9 

-37.5 

37.3 
20.5 
44.9 
-13.2 

48.9 
57 

92.1 
9.5 

(b) 
Both type of climate scenarios have shown that the Upper Suriname river basin is sensitive to 
climate change. Such large annual and monthly changes in the water balance may result in 
extreme events such as flooding and drought. The most dramatic case is for T+2oC (see 
Table 9). If the river discharge in the Upper Suriname river will decrease, this will also have 
significant impact on hydropower generation in the future. The decrease in surface runoff and 
base flow will also have its impact on the vegetation cover (tropical forest might change into 
dry forest) and in turn again affect the amount of water resources. If river discharges will 
increase, this will cause water levels to rise, resulting in flooding of the river banks and 
changes in the morphology of rivers. It should however be noticed that an increase in surface 
air temperature will not only affect precipitation and evapotranspiration, but factors such as 
solar radiation, wind, cloudiness and vegetation cover may also affect the basin hydrology.  
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Discussion and conclusions 
 
This paper presents a spatial distributed hydrologic modeling and GIS approach for the 
assessment of climate change on the hydrological processes in a large tropical basin. The 
WetSpa model produced moderate simulation results for the river flows in the Upper 
Suriname river basin at daily time step, with parameters calibrated against measured river 
discharges series.  
 
The hydrological simulation of the GCM scenario years 2050 and 2080 indicate that the 
annual river discharge in the Upper Suriname river basin will decrease in magnitude 
(maximum 35%). This decrease may change vegetation cover in time and in turn again affect 
the discharge in the Upper Suriname river. When applying hypothetical scenarios (T+2oC, 
T+4oC and P+10%, 30% and 50%), the WetSpa model simulates an increase in annual river 
discharges in the river basin of maximum 75%, and for T+2oC, T+4oC and P-10%, -30% and -
50%, the river discharge is predicted to decrease with maximum 87.5%. The results obtained 
by both methods, do differ much from each other. Hypothetical climate change scenarios 
however give a better indication of how hydrological processes might change due to gradual 
changes in temperature.  
 
The difference in simulated water balance components based on GCM and hypothetical 
scenarios may be explained by the application of the type of scenarios (e.g. uniform change 
in temperature in the case of hypothetical scenarios, limitations of GCM models). Therefore, 
the simulated runoff values in this study give only an order of magnitude of plausible changes. 
Uncertainties in the simulated future water balance components can also be caused be the 
model performance of the WetSpa model. This could be increased by using field parameters 
instead of literature values, longer historical data series for calibration and more hydrological 
observations (e.g. base flow) for calibration of the model. The uncertainty of river discharge 
prediction for hydrological modeling using climate change scenarios is also caused by the fact 
that precipitation patterns from a coarse gridded GCM are uncertain. Besides the many 
uncertainties in GCMs, the uncertainties in the climate scenarios may also cause deviations in 
the predictions (Giorgi et al, 2001; Mearns et al, 2003). It is therefore advised  to use 
downscaling techniques and regional climate models (RCMs) in future studies (Menzel and 
Burger, 2002). Regional scenarios of future climate can be used to study the “true” impacts of 
climate change on the river discharge in the Upper Suriname river basin. Another uncertainty 
in the obtained results is the lack of knowledge about the future change in evapotranspiration. 
As less is known about the ability of the WetSpa model to simulate future changes in water 
balance components under climate change conditions, it would also be useful to apply more 
hydrological models to this study area for the same purpose. Future work on the impact of 
climate change should also be extended by the consideration of changes in land cover due to 
the interaction between climate change and changes in vegetation composition. This study 
shows that the estimated changes in runoff are large enough to be considered for future 
impact analyses e.g. flood studies, effect on hydropower generation. 
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